Degerö
General
The Degerö mire has a long history of scientific research. Scientific
investigations started in 1909, and the first PhD
thesis "A study of botanical, hydrological and mire
development at a mire complex in Northern Sweden" was published
by Carl Malmströ in 1923.
More recent research on mire biogeochemistry and biosphere-atmosphere exchange processes started 1995. It is a nutrient poor minerogenic mire, i.e. a fen, representing much of the mire areas in the boreal region.
The site hosts an ICOS ecosystem station which is in operation since 2013.
Location
Degerö Stormyr (64°11′N, 19°33′E, 270 m asl) is
located in the Kulbäcksliden Experimental Forest
near Vindeln in the county of Västerbotten, Sweden.
The mire covers an area of 6.5 km2 and is situated on a highland between two major rivers, Umeälven and Vindelälven, ca 70 km from the Gulf of Bothnia.
Contact
Degerö is located in the
Svartberget Experimental Forests.
It is run by the
Swedish Agricultural University SLU
and the station principal investigator is
Mats Nilsson.
You are welcome!
ICOS Sweden invites other research groups to use the infrastructure.
Please fill in our
web form.
Geology and Soil
The mire is situated above the highest coastline and thus the
area has never been exposed to the sea.
The bedrock constitutes of gneiss, covered with moraines. The Degerö mire consists of a rather complex system of connected smaller mires, divided by islets and ridges of glacial till.
The depth of the peat is generally between 3-4 m, with depths up to 8 m. Organic rich lake sediment started to accumulate about 8000 years ago. Today the deepest peat layers correspond to an age of ~5800 years.
Digital elevation model (DEM) based on Lidar data for Degerö,
2x2m resolution. Blue: mire area, green/yellow: forested mineral soils,
red arrows: surface water flow directions.
Click to enlarge.
Vegetation
The Degerö Stormyr catchment is covered by 69% by
mire and 31% by forest: mainly Scots pine (Pinus sylvestris)
with some Norway spruce (Picea abies).
The nutrient poor mineral soils and bedrocks in the region result in nutrient poor conditions which are also clearly reflected by the plant species composition of the mire plant communities.
The area around the measurement mast is dominated by flat mire lawn plant communities with bog mosses (Sphagnum balticum, Sphagnum majus and Sphagnum Lindbergii) dominating the bottom layer.
The field layer is dominated by the cottongrass (Eriophorum vaginatum) and the dwraf- shrubs: cranberry (Vaccinium oxycoccos L.), bog-rosemary (Andromeda polifolia), deergrass (Trichophorum cespitosum). Sedges (Carex spp.) occur more sparsely.
Average water table depth during the growing season is 10 - 25 cm below the mire surface.
Vegetation map of Degerö: The different colours refers to a canopy height model.
Almost all reddish/brownish areas represent mire areas and yellow-green
areas represent forests varying in canopy height. Three clear
cut areas are marked by #1 and open pools/lakes in the mire are marked by #2.
Click to enlarge.
Climate
The climate of the site is defined as cold temperate humid
(Dfc climate after Köppen) with mean annual precipitation
and temperature of 523 mm and +1.2°C respectively, with the
mean temperatures in July and January being +14.7°C and
-12.4°C, respectively (1961-1990).
Climate diagram Vindeln. Data from SMHI (1961-1990). The diagram displays monthly averages
for temperature and precipitation. When the precipitation curve undercuts the temperature curve,
this indicates dry season. When the precipitation curve exceeds the temperature curve, this
indicates moist season.
Click to enlarge.
Wind rose Degerö.
Click to enlarge.
Data from 2014-01-01 until 2016-11-20 measured with a
sonic anemometer
.
Where does the air come from that is measured at 1.8 m height at the tower?
Footprint area for July 2014 in Degerö. Each contour line adds 10%
contribution starting at the tower (red dot); the background map is an
illustration of the vegetation height. Calculation done by N. Kljun, Swansea University.
Click to enlarge.
Measurements
Several long-term, still ongoing, field manipulation experiments as well as
shorter research projects are carried out within the mire catchment. The
research at the site covers a large variety of general ecological and
biogeochemical research questions with some focus on carbon biogeochemistry
of methane production, oxidation, and emission.
Continuous measurements of the biosphere-atmosphere exchange of CO2 by eddy covariance started 2001. Since more than ten years all significant carbon fluxes (biosphere-atmosphere flux of carbon dioxide CO2 and methane CH4 as well as the discharge export of both organic and inorganic carbon) are covered.
For more detailed information please contact Mats Nilsson.
The weir at the catchment outlet used for continuous
measurements of the discharge and water C-export.
Click to enlarge.
ICOS measurements
All related, continuous, automatic measurements are listed below in alphabetical order.
The measurements are carried out either on one of the three small towers,
at the earth surface or in the four soil pits. All measurements are
carried out within a distance of about 200 m of the igloo.
Variable | Measurement height (m) | |
air humidity | 2.03 | |
profile | 0.35, 0.69, 1.22, 1.88, 2.89 | |
flux system | 1.75 | |
air pressure | ||
air temperature | 2.03 | |
profile | 0.31, 0.7, 1.28, 2.0, 3.0 | |
flux system | 1.75 | |
carbon dioxide (CO2) | profile | 0.31, 0.7, 1.28, 2.0, 3.0 |
flux system | 1.75 | |
ground water level | 4x | |
methane (CH4) | profile | 0.31, 0.7, 1.28, 2.0, 3.0 |
flux system | 1.75 | |
PAR | incoming and outgoing | 4.0 |
diffuse and total incoming | 4.0 | |
precipitation | 2.0 | |
snow depth | ||
soil heat flux | 4x together with each profile | -0.08 |
soil moisture | 4x together with each profile | 0.00 to -0.06 (vertical) |
soil temperature | 4 profiles | -0.05, -0.1, -0.15, -0.3 ,-0.5 |
solar radiation | incoming | 4.0 |
incoming and outgoing | 4.0 | |
sunshine duration | 4.0 | |
surface temperature | target temperature | |
terrestrial radiation | incoming and outgoing | 4.0 |
wind vector | flux system | 1.75 |
Collaborations
As an infrastructure we are welcoming other research groups
to carry out their projects at our station. Actually, we have - among others -
the following projects that have joined at the Degerö station:
Please click on an individual project to get more information.
Publications (peer-reviewed articles and theses)
-
2017
- Nijp J.J., Metselaar K., Limpens J., Teutschbein C., Peichl M., Nilsson M.B., Berendse F., and van der Zee S.E.A.T.M. (2017): Including hydrological self-regulating processes in peatland models: effects on peat moss drought projections. MethodsX, 4:134-142, DOI:10.1016/j.scitotenv.2016.12.104, PDF [1MB]
-
2016
- Larsson A., Segerström U., Laudon H., and Nilsson M.B. (2016): Holocene carbon and nitrogen accumulation rates in a boreal oligotrophic fen. The Holocene, first published 2016-11-09, DOI:10.1177/0959683616675936
- Leach J., Larsson A., Wallin M., Nilsson M.B., and Laudon H. (2016): Twelve year interannual and seasonal variability of stream carbon export from a boreal peatland catchment. Journal of Geophysical Research - Biogeosciences, 121, 1851-1866, DOI:10.1002/2016JG003357
- Metzger C., Nilsson M.B., Peichl M., and Jansson P.-E. (2016): Parameter interactions and sensitivity analysis for modelling carbon heat and water fluxes in a natural peatland, using CoupModel v5. Geoscientific Model Development, 9:4313-4338, DOI:10.5194/gmd-9-4313-2016, PDF [5.3MB]
- Osterwald S., Fritsche J., Alewell C., Schmutz M., Nilsson M.B., Jocher G., Sommar J., Rinne J., and Bishop K. (2016): A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux. Atmospheric Measurement Techniques, 9:509-524, DOI:10.5194/amt-9-509-2016, PDF [4MB]
- Zhao J., Peichl M., and Nilsson M.B. (2016): Enhanced winter soil frost reduces methane emission during the subsequent growing season in a boreal peatland. Global Change Biology, 22: 750-762, DOI:10.1111/gcb.13119
- Zhao J., Peichl M., Öquist M., and Nilsson M.B. (2016): Gross primary production controls the subsequent winter CO2 exchange in a boreal peatland. Global Change Biology, 22: 4028-4037, DOI:10.1111/gcb.13308
-
2015
- Erhagen B., Ilstedt U., and Nilsson M.B. (2015): Temperature sensitivity of heterotrophic soil CO2 production increases with increasing carbon substrate uptake rate. Soil Biology and Biogeochemistry, 80:45-52, DOI:10.1016/j.soilbio.2014.09.021
- Nijp J.J., Limpens J., Metselaar K., Peichl M., Nilsson M.B., van der Zee S.E.A.T.M., and Berendse F. (2015): Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Global Change Biology, 21:2309-2320, doi:10.1111/gcb.12864
- Peichl M., Sonnentag O., Nilsson M.B. (2015): Bringing color into the picture: Using digital repeat photography to investigate phenology controls of the carbon dioxide exchange in a boreal mire. Ecosystems, 18:115-131, DOI: 10.1007/s10021-014-9815-z
-
2014
- Carmino-Serrano M., Gielen B., Luyssaert S., et al. (2014): Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. Global Biogeochemical Cycles, 28:497-509, DOI:10.1002/2013GB004726
- Fritsche J., Osterwalder S., Nilsson M.B, Sagerfors J., Åkerblom S., Bishop K., and Alewell C. (2014): Evasion of elemental mercury from a boreal peatland suppressed by long-term sulfate addition. Environmental Science & Technology Letters, 1:421-425, DOI:10.1021/ez500223a
- Öquist M.G., Bishop K., Grelle A., Klemedtsson L., Köhler S.J., Laudon H., Lindroth A., Ottosson Löfvenius M., Wallin M.B., and Nilsson M.B. (2014): The full annual carbon balance of boreal forests is highly sensitive to precipitation. Environmental Science & Technology Letters, 1:315-319, DOI:10.1021/ez500169j
- Peichl M., Öquist M., Ottosson-Löfvenius M., Ilstedt U., Sagerfors J., Grelle A., Lindroth A., Nilsson M.B. (2014): A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide uptake in a boreal fen. Environmental Research Letters, 9:055006, DOI:10.1088/1748-9326/9/5/055006, PDF [1.9MB]
- Song B., Niu S., Luo R., et al. (2014): Divergent apparent temperature sensitivity of terrestrial ecosystem respiration. Journal of Plant Ecology, DOI:10.1093/jpe/rtu014
-
2013
- Åkerblom S., Bishop K., Björn E., Lambertsson L., Eriksson T., and Nilsson M.B. (2013): Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands. Geochimica et Cosmochimica Acta, 102:1-11, DOI:10.1016/j.gca.2012.10.025
- Erhagen B. (2013): Temperature sensitivity of soil carbon decomposition - molecular controls and environmental feedbacks. PhD thesis, Swedish University of Agricultural Sciences, Umeå, pp 68, PDF [5.7MB]
- Erhagen B., Öquist M., Sparrman T., Haei M., Ihlstedt U., Hedenström M., Schleucher J., and Nilsson M.B. (2013): Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material. Global Change Biology, 19:3858-3871, DOI:10.1111/gcb.12342
- Peichl M., Sagerfors J., Lindroth A., Buffam I., Grelle A., Klemedtsson L., Laudon H., and Nilsson M.B. (2013): Energy exchange and water budget partitioning in a boreal minerogenic mire. Journal of Geophysical Research: Biogeosciences, 118:1-13, DOI:10.1029/2012JG002073
- Wu J., Roulet N.T., Sagerfors J., and Nilsson M.B. (2013): Simulation of six years of carbon fluxes for a sedge-dominated oligotrophic minerogenic peatland in Northern Sweden using the McGill Wetland Model (MWM). Journal of Geophysical Research: Biogeoscience, 118:795-807, DOI:10.1002/jgrg.20045
-
2012
- Ågren A., Haei M., Blomkvist P., Nilsson M.B., and Laudon H. (2012): Soil frost enhances stream dissolved organic carbon concentrations during episodic spring snow melt from boreal mires. Global Change Biology, 18:1895-1903, DOI:10.1111/j.1365-2486.2012.02666.x
- Bergman I., Bishop K., Tu Q., Frech W., Åkerblom S., and Nilsson M. (2012): The influence of sulphate deposition on the seasonal variation of peat pore water Methyl Hg in a boreal mire. PLoS ONE, 7(9):e45547, DOI:10.1371/journal.pone.0045547, PDF [0.4MB] and DOI:10.1371/annotation/c81e29f5-0042-4155-bcba-19839ed573b3
- Laine A.M., Bubier J., Riutta T., Nilsson M.B., Moore T.R., Vasander H., and Tuittila E.S. (2012): Abundance and composition of plant biomass as potential controls for mire net ecosytem CO2 exchange. Botany, 90:63-74, DOI:10.1139/b11-068
- Limpens J., Granath G., Aerts R., et al. (2012): Glasshouse vs field experiments: do they yield ecologically similar results for assessing N impacts on peat mosses? New Phytologist, 195:408-418, DOI:10.1111/j.1469-8137.2012.04157.x, PDF [0.5MB]
- Wu J., Roulet N.T., Nilsson M., Lafleur P., and Humphreys E. (2012): Simulating the carbon cycling of northern peatlands using a land surface scheme coupled to a wetland carbon model (CLASS3W-MWM). Atmosphere-Ocean, 50:487-506, DOI:10.1080/07055900.2012.730980
-
2011
- Limpens J., Granath G., Gunnarsson U., et al. (2011): Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytologist, 191:496-507, DOI:10.1111/j.1469-8137.2011.03680.x, PDF [0.4MB]
- Schubert P. (2011): Model development for estimating carbon dioxide exchange in Nordic forests and peatlands with MODIS time series data. PhD thesis, Lund university, Lund, ISBN:978-91-85793-20-4
- Wallin M. (2011): Evasion of CO2 from streams - quantifying a carbon component of the aquatic conduit in the boreal landscape. PhD thesis, Swedish University of Agricultural Sciences, Uppsala, pp 44, PDF [0.5MB]
-
2010
- Eppinga M.B., Rietkerk M., Belyea L.B., Nilsson M.B., De Ruiter P.C., and Wassen M.J. (2010): Resource contrast in patterned peatlands increases along a climatic gradient. Ecology, 91:2344-2355, DOI:10.1890/09-1313.1
- Eriksson T. (2010): Boreal mire carbon exchange - Sensitivity to climate change and anthropogenic nitrogen and sulfur deposition. PhD thesis, Swedish University of Agricultural Sciences, Umeå, pp 56, PDF [0.7MB]
- Eriksson T., Öquist M., and Nilsson M.B. (2010): Production and oxidation of methane in a boreal mire after a decade of increased temperature and nitrogen and sulfur deposition. Global Change Biology, 16:2130-2144, DOI:10.1111/j.1365-2486.2009.02097.x
- Eriksson T., Öquist M.G., and Nilsson M.B. (2010): Effects of decadal deposition of nitrogen and sulfur, and increased temperature, on methane emissions from a boreal peatland. Journal of Geophysical Research: Biogeoscience, 115: G04036, DOI:10.1029/2010JG001285, PDF [0.6MB]
- Harrysson Drotz S. (2010): Biogeochemical processes in frozen soils - Unfrozen water in frozen soils and factors regulating carbon mineralization at low temperatures. PhD thesis, Swedish University of Agricultural Sciences, Umeå, pp 61, PDF [0.4MB]
- Harrysson Drotz S., Sparrman T., Schleucher J., Nilsson M., and Öquist M.G. (2010): Effects of soil organic matter composition on unfrozen water content and heterotrophic CO2 production of frozen soils. Geochimica et Cosmochimica Acta, 74:2281-2290, DOI:10.1016/j.gca.2010.01.026
- Harrysson Drotz S., Sparrman T., Nilsson M.B., Schleucher J., and Öquist M.G. (2010): Both catabolic and anabolic heterotrophic microbial activity proceed in frozen soils. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 107:21046-21051, DOI:10.1073/pnas.1008885107, PDF [0.4MB]
- Lund M., Lafleur P.M., Roulet N.T., et al. (2010): Variability in exchange of CO2 across 12 northern peatland and tundra sites. Global Change Biology, 16:2436-2448, DOI:10.1111/j.1365-2486.2009.02104.x
- Schubert P., Eklundh L., Lund M., and Nilsson M. (2010): Estimating northern peatland CO2 exchange from MODIS time series data. Remote Sensing of Environment, 114:1178-1189, DOI:10.1016/j.rse.2010.01.005
- Yi C., Ricciuto D., Li R., et al. (2010): Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters. 5:034007, DOI:10.1088/1748-9326/5/3/034007, PDF [0.7MB]
-
2009
- Eppinga M. (2009): Catastrophic shifts in bog ecosystems can be predicted on the basis of self-organised spatial vegetation patterning. PhD thesis, Utrecht University, Utrecht
- Granath G., Wiedermann M.M., and Strengbom J. (2009): Physiological responses to nitrogen and sulphur addition and raised temperature in Sphagnum balticum. Oecologia, 161:481-490, DOI:10.1007/s00442-009-1406-x
- Harrysson Drotz S., Tillston E.L., Sparrman T., Schleucher J., Nilsson M., and Öquist M.G. (2009): Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils. Geoderma, 148:392-398, DOI:10.1016/j.geoderma.2008.11.007
- Lund M. (2009): Peatlands at a threshold: greenhouse gas dynamics in a changing climate. PhD thesis, Lund University, Lund, pp. 164, ISBN:978-91-85793-08-2
- Öquist M.G., Sparrman T., Klemedtsson L., Harrysson Drotz S., Grip H., Schleucher J., and Nilsson M. (2009): Water availability controls microbial temperature response in frozen soil CO2 production. Global Change Biology, 15:2715-2722; DOI:10.1111/j.1365-2486.2009.01898.x
- Wania R., Ross I., and Prentice I.C. (2009): Integrating peatlands and permafrost into a dynamic global vegetation model: 2. Evaluation and sensitivity of vegetation and carbon cycle processes. Global Biogeochemical Cycles, 23: GB3015, DOI:10.1029/2008GB003413, PDF [0.9MB]
- Wiedermann M.M., Gunnarsson U., Nilsson M.B., Nordin A., and Ericsson L. (2009): Can small-scale experiments predict ecosystem responses? An example from peatlands. Oikos, 118:449-456, DOI:10.1111/j.1600-0706.2008.17129.x
- Wiedermann M.M., Gunnarsson U., Ericson L., and Nordin A. (2009): Ecophysiological adjustment of two Sphagnum species in response to anthropogenic nitrogen deposition. New Phytologist, 181:208-217, DOI:10.1111/j.1469-8137.2008.02628.x, PDF [0.3MB]
- Wu J. (2009): Simulating northern peatland-atmosphere carbon dioxide exchange with changes in climate. PhD thesis, McGill University, Montreal, Quebec, pp 296, PDF [4.9MB]
-
2008
- Nilsson M., Sagerfors J., Buffam I., Laudon H., Eriksson T., Grelle A., Klemedtsson L., Weslien P., and Lindroth A. (2008): Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire - a significant sink after accounting for all C-fluxes. Global Change Biology, 14:2317-2332, DOI:10.1111/j.1365-2486.2008.01654.x
- Sagerfors J., Lindroth A., Grelle A., Klemedtsson L., Weslien P., and Nilsson M. (2008): Annual CO2 exchange between a nutrient-poor, minerotrophic, boreal mire and the atmosphere. Journal of Geophysical Research: Biogeosciences, 113:G01001, DOI:10.1029/2006JG000306, PDF [1.5MB]
- van der Linden M., Barke J., Vickery E., Charman D.J., and van Geel B. (2008): Late Holocene human impact and climate change recorded in a North Swedish peat deposit. Palaeogeography Palaeoclimatology Palaeoecology, 258:1-27, DOI:10.1016/j.palaeo.2007.11.006
- Wiedermann M.M. (2008): Responses of peatland vegetation to enhanced nitrogen. PhD thesis, Umeå University, Umeå, pp 34, PDF [1.1MB]
-
2007
- Lindroth A., Lund M., Nilsson M., et al. (2007): Environmental controls on the CO2 exchange in north European mires. Tellus, 59:812-825, DOI:10.1111/j.1600-0889.2007.00310, PDF [0.9MB]
- Sagerfors J. (2007): Land-atmosphere exchange of CO2, water and energy at a boreal minerotrophic mire. PhD thesis, Swedish University of Agricultural Sciences, Umeå, pp 70, PDF [6MB]
- van der Linden M. (2007): Effects of climate change and human impact on late-Holocene species composition and carbon accumulation in bog ecosystems. PhD thesis, University of Amsterdam, Amsterdam, pp 225, PDF [17.1MB]
- Wania R. (2007): Modelling northern peatland land surface processes, vegetation dynamics and methane emissions. PhD thesis, University of Bristol, Bristol, pp. 130
- Wiederman, M., Nordin A., Gunnarsson U., Nilsson M.B., and Ericsson L. (2007): Global change shifts vegetation and plant-parasite interactions in a boreal mire. Ecology, 88:454-464, DOI:10.1890/05-1823
- Yurova A.Y. (2007): Hydrological aspects of the carbon balance in a boreal catchment: A model study. PhD thesis, Lund University, Lund, pp 50, ISBN:978-91-85793-03-7
- Yurova A.Y., Wolf A., Sagerfors J., and Nilsson M. (2007): Variations in net ecosystem exchange of carbon dioxide in a boreal mire: Modeling mechanisms linked to water table position. Journal of Geophysical Research: Biogeosciences 112:G02025, DOI:10.1029/2006JG000342, PDF [0.5MB]
-
2004
- Gauci V., Matthews E., Dise N., Walter B., Koch D., Granberg G., and Vile M. (2004): Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 101:12583-12587, DOI:10.1073/pnas.0404412101, PDF [0.3MB]
- Gunnarsson U., Granberg G., and Nilsson M. (2004): Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire. New Phytologist, 163:349-359, DOI:10.1111/j.1469-8137.2004.01108.x, PDF [0.4MB]
-
2001
- Branfireun B.A., Bishop K., Roulet N.T., Granberg G., and Nilsson M. (2001): Mercury cycling in boreal ecosystems: The long-term effect of acid rain constituents on peatland pore water methylmercury concentrations. Geophysical Research Letters, 28:1227-1230, DOI:10.1029/2000GL011867, PDF [0.5MB]
- Granberg G., Sundh I., Svensson B.H., and Nilsson M. (2001): Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire. Ecology, 82:1982-1998
- Granberg G., Ottosson Löfvenius M., Grip H., Sundh I., and Nilsson M. (2001): Effect of climatic variability from 1980 to 1997 on simulated methane emission from a boreal mixed mire in northern Sweden. Global Biogeochemical Cycles, 15:977-991, DOI:10.1029/2000GB001356, PDF [1.8MB]
-
2000
- Gunnarsson U. (2000): Vegetation changes on swedish mires - Effects of raised temperature and increased nitrogen and sulphur influx. PhD thesis, Uppsala University, Uppsala, pp 25, PDF [0.2MB]
-
1999
- Granberg G., Grip H., Ottosson Löfvenius M., Sundh I., Svensson B.H., and Nilsson M. (1999): A simple model for simulation of water content, soil frost and soil temperatures in boreal mixed mires. Water Resources and Research, 35:3771-3782, DOI:10.1029/1999WR900216, PDF [1.4MB]
-
1998
- Granberg G. (1998): Environmental control of methane emission from boreal mires: experimental data and model simulations. PhD thesis, Swedish University of Agricultural Sciences, Umeå, pp 28, ISBN:91-576-5617-7
-
1992
- Magnusson T. (1992): Temporal and spatial variation of the soil atmosphere in forest soils in northern Sweden. PhD thesis, Swedish University of Agricultural Sciences, Umeå, pp 25
-
1923
- Malmströ C. (1923): Degerö Stormyr: en botanisk, hydrologisk och utvecklingshistorisk undersökning över ett nordsvenskt myrkomplex. PhD thesis, Centraltryckeriet Stockholm, pp 176