Svartberget
View from the tower in Svartberget.
Click to enlarge.
Click here to get the map fullscreen on GoogleMaps.
Click here to get the map fullscreen on GoogleMaps.
General
The Svartberget site is located in the
Svartberget Experimental Forest.
The experimental forest covers 1076 ha of boreal forest land
and governs a manifold of research activities since 1923. A
reference monitoring program of climate and water is active
since 1980.
The site was established for ICOS Sweden in 2011 and hosts a combined ecosystem and atmospheric station.
Data download
Data from Svartberget can be downloaded from the ICOS Carbon Portal.ICOS Level2 data from the Atmosphere Station (GHG concentrations, air temperature, wind). ICOS Level2 data from the Ecosystem Station (flux data, meteorological data, soil meteorological variables, ancillary data)
Location
The Svartberget site (64°15′N, 19°46′E, 270 m asl) is located
about 60 km west of Umeå.
Contact
The site is run by the
Swedish Agricultural University SLU.
The station principal investigator for the atmospheric part is
Paul Smith,
for the ecosystem part
Matthias Peichl
is responsible.
You are welcome!
ICOS Sweden invites other research groups to use the infrastructure.
Please fill in our
web form.
Geology and Soil
The bedrock consists almost entirely of gneiss. The dominating
soil type is moraine of various thicknesses.
Geological map (1:50'000) of the area around the tower. The tower
is located in the center of the map. The map is
generated with the map generator of the Geological
Survey of Sweden (SGU).
Click to enlarge.
Soil map (1:25'000) of the area around the tower. The tower
is located in the center of the map. The map is
generated with the map generator of the Geological
Survey of Sweden (SGU).
Click to enlarge.
Vegetation
The Svartberget site is situated on a slope
in a 100 years old mixed forest with 60% Scots pine
Pinus sylvestris and 40% Norway spruce
Picea abies. Tree height close to the tower is about 20m.
Vegetation map of Svartberget.
Map basis is a lidar-scanning (Oct 2013).
F: Svartberget research station,
S: spruce (Picea abies) dominated forest,
P: pine (Pinus sylvestris L.) dominated forest,
P/S: mixed pine and spruce forest,
C: clearcut area,
M: mire,
L: lake
Click to enlarge.
Climate
The cold humid climate type of the site is attributed
by relatively short summer (the growing season is 150 days/year)
and permanent snow cover during winter (170 days/year). The mean
annual air temperature is 1.8°C and annual precipitation
sums up to 614 mm (data period 1981-2010).
Data for the 1961-1990 climatological normal from the close by SMHI station Vindeln characterizes the climate as a Dfc-climate (after Köppen), i.e. humid subarctic with cold summers and cold winters.
Climate diagram Vindeln (1961-1990, SMHI station Vindeln). The diagram displays monthly averages
for temperature and precipitation. When the precipitation curve undercuts the temperature curve,
this indicates dry season. When the precipitation curve exceeds the temperature curve, this
indicates moist season.
Click to enlarge.
Wind rose Svartberget.
Click to enlarge.
Data from 2014-01-01 until 2016-11-20 measured with a
sonic anemometer
.
Where does the air come from that is measured at 32.5 m height at the tower?
Footprint area for July 2014 in Svartberget. Each contour line adds 10%
contribution starting at the tower (red dot); the background map is an
illustration of the vegetation height. Calculation done by N. Kljun, Swansea University.
Click to enlarge.
Non-ICOS measurements
The ICOS site is located in the heart of
Krycklan catchment area,
in the centre of a well investigated sub-catchment with
long-term hydrological measurement.
For more detailed information please contact Mikaell Ottosson Löfvenius.
ICOS measurements
All related, continuous, automatic measurements are listed below in alphabetical order.
The measurements are carried out either on the 150 m high tower, at the earth
surface, in the four soil pits or on the four trees. All measurements are
carried out within a distance of about 200 m of the tower.
Variable | Measurement height (m) | |
air pressure | ||
air temperature | 32.5 | |
profile | 4.2, 10, 15, 20, 25, 30, 35, 42, 50, 60, 70, 85, 100, 125, 150 | |
flux system | 32.5 | |
carbon dioxide (CO2) | profile | 4.2, 10, 15, 20, 25, 30, 35, 42, 50, 60, 70, 85, 100, 125, 150 |
flux system | 32.5 | |
atmospheric system | 35, 85, 150 | |
carbon monoxide (CO) | atmospheric system | 35, 85, 150 |
ground water level | ||
methane (CH4) | atmospheric system | 35, 85, 150 |
PAR | 4 transects in the canopy with each 4 sensors | 1.1 |
incoming and outgoing | 50 | |
diffuse and total incoming | 50 | |
precipitation | 2.5 | |
snow depth | ||
soil heat flux | 4x together with each profile | -0.05 |
soil moisture | 4 profiles | 0 to -0.06 (vertical), -0.05, -0.1, -0.3, -0.5 |
soil temperature | 4 profiles | -0.05, -0.1, -0.15, -0.3, -0.5 |
solar radiation | incoming | 50 |
incoming and outgoing | 50 | |
sunshine duration | 50 | |
surface temperature | target temperature | |
terrestrial radiation | incoming and outgoing | 50 |
tree temperature | 2 spruce and 2 pine with 3 levels, and 4 sensors at each level (facing N, E, S, and W) | 3.5, about 11.5, about 14 |
water vapour | 32.5 | |
profile | 4.2, 10, 15, 20, 25, 30, 35, 42, 50, 60, 70, 85, 100, 125, 150 | |
flux system | 32.5 | |
atmospheric system | ||
wind vector | flux system | 32.5 |
Collaborations
As an infrastructure we are welcoming other research groups
to carry out their projects at our station. Actually, we have - among others -
the following projects that have joined at the Svartberget station:
Please click on an individual project to get more information.
Publications (peer-reviewed articles and theses)
-
2017
- Amvrosiadi N., Seibert J., Grabs T., and Bishop K. (2017): Water storage dynamics in a till hillslope: The foundation for modeling flows and turnover times. Hydrological Processes, 31:4-14, DOI:10.1002/hyp.11046, PDF [1.6MB]
- Tiwari T., Lidman F., Laudon H., Lidberg W., and Ågren A.M. (2017): GIS-based prediction of stream chemistry using landscape composition, wet areas and hydrological flow pathways. Journal of Geophysical Research - Biogeosciences, 122:65-79, DOI:10.1002/2016JG003399
-
2016
- Blume-Werry G., Kreyling J., Laudon H., and Milbau, A. (2016): Short-term climate change manipulation effects do not scale up to long-term legacies: Effects of an absent snow cover on boreal forest plants. Journal of Ecology, 104:1638-1648, DOI:10.1111/1365-2745.12636
- Francisco R., Stone D., Creamer R.E., Sousa J.P., and Morais P.V. (2016): European scale analysis of phospholipid fatty acid composition of soils to establish operating ranges. Applied Soil Ecology, 97:49-60, DOI:10.1016/j.apsoil.2015.09.001
- Griffiths R.I., Thomson B.C., Plassart P., Gweon H.S., Stone D., Creamer R.E., Lemanceaud P., and Bailey M.J. (2016): Mapping and validating predictions of soil bacterial biodiversity using European and national scale datasets. Applied Soil Ecology, 97:61-68, DOI:10.1016/j.apsoil.2015.06.018
- Hasper T.B., Wallin G., Lamba S., Hall M., Jaramillo F., Laudon H., Linder S., Medhurst J.L., Räntfors M., Sigurdsson B.D., and Uddling J. (2016): Water use by Swedish boreal forests in a changing climate. Functional Ecology, 30:690-699, DOI:10.1111/1365-2435.12546
- Hendriksen N.B., Creamer R.E., Stone D., and Winding A. (2016): Soil exo-enzyme activities across Europe - The influence of climate, land-use and soil properties. Applied Soil Ecology, 97:44-48, DOI:10.1016/j.apsoil.2015.08.012
- Karlsen R.H., Grabs T., Bishop K., Buffam I., Laudon H., and Seibert J. (2016): Landscape controls on spatiotemporal discharge variability in a boreal catchment. Water Resources Research, 52:6541-6556, DOI:10.1002/2016WR019186
- Karlsen R.H., Seibert J., Grabs T., Laudon H., Blomkvist P., Bishop K. (2016): The assumption of uniform specific discharge: unsafe at any time? Hydrological Processes, 30:3978-3988, DOI:10.1002/hyp.10877
- Kasurinen V., Alfredsen K., Ojala A., Pumpanen J., Weyhenmeyer G.A., Futter M.N., Laudon H., and Berninger F. (2016): Modeling nonlinear responses of DOC transport in boreal catchments in Sweden. Water Resources Research, 52:4970-4989, DOI:10.1002/2015WR018343
- Kuglerová L., Dynesius M., Laudon H., and Jansson R. (2016): Relationships between plant assemblages and water flow across a boreal forest landscape: A comparison of liverworts, mosses, and vascular plants. Ecosystems, 19:170-184, DOI:10.1007/s10021-015-9927-0
- Laudon H. and Ottosson Löfvenius M. (2016): Adding snow to the picture - providing complementary winter precipitation data to the Krycklan catchment study database. Hydrological Processes, 30:2413-2416, DOI:10.1002/hyp.10753
- Laudon H., Kuglerová L., Sponseller R.A., Futter M., Nordin A., Bishop K., Lundmark T., Egnell G., and Ågren A.M. (2016): The role of biogeochemical hotspots, landscape heterogeneity and hydrological connectivity for minimizing forestry effects on water quality. Ambio, 45:152-162, DOI:10.1007/s13280-015-0751-8, PDF [1.2MB]
- Logue J.B., Stedmon C.A., Kellerman A.M., Nielsen N.J., Andersson A.F., Laudon H., Lindström E.S., and Kritzberg E.S. (2016): Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. The ISME Journal, 10:533-545, DOI:10.1038/ismej.2015.131
- Lucas R.W., Sponseller R.A., Gundale M.J., Stendahl J., Fridman J., Högberg P., and Laudon H. (2016): Long-term declines in stream and river inorganic nitrogen (N) export correspond to forest change. Ecological Applications, 26:545-556, DOI:10.1890/14-2413, PDF [0.3MB]
- Oni S., Futter M., Ledesma J., Teutschbein C., Buttle J., and Laudon H. (2016): Using dry and wet year hydroclimatic extremes to guide future hydrologic projections. Hydrology and Earth System Sciences, 20:2811-2825, DOI:10.5194/hess-20-2811-2016, PDF [1.9MB]
- Panneer Selvam B., Laudon H., Guillemette F., and Berggren, M. (2016): Influence of soil frost on the character and degradability of dissolved organic carbon in boreal forest soils. Journal of Geophysical Research - Biogeosciences, 121:829-840, DOI:10.1002/2015JG003228
- Rutgers M., Wouterse M., Drost S.M., Breure A.M., Mulder C., Stone D., Creamer R.E., Winding A., and Bloem J. (2016): Monitoring soil bacteria with community-level physiological profiles using BiologTM ECO-plates in the Netherlands and Europe. Applied Soil Ecology, 97:23-35, DOI:10.1016/j.apsoil.2015.06.007
- Siegenthaler A., Welch B., Pangala S.R., Peacock M., and Gauci V. (2016): Technical note: Semi-rigid chambers for methane gas flux measurements on tree-stems. Biogeosciences 13:1197-1207, DOI:10.5194/bgd-13-1197-2016
- Stone D., Blomkvist P., Bohse Hendriksen N. et al. (2016): A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe. Applied Soil Ecology, 97:3-11, DOI:10.1016/j.apsoil.2015.06.017
- Winterdahl M., Wallin M.B., Huseby Karlsen R., Laudon H., Öquist M., and Lyon S.W. (2016): Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams. Journal of Geophysical Research - Biogeosciences, 121:2630-2651, DOI:10.1002/2016JG003420
-
2015
- Ali G., Tetzlaff D., McDonnell J.J., Soulsby C., Carey S., Laudon H., McGuire K., Buttle J., Seibert J., and Shanley J. (2015): Comparison of threshold hydrologic response across northern catchments. Hydrological Processes, 29:3575-3591, DOI:10.1002/hyp.10527
- Berggren M., Bergström A.-K., and Karlsson J. (2015): Intraspecific autochthonous and allochthonous resource use by zooplankton in a humic lake during the transitions between winter, summer and fall. PLOS ONE, 10: e0120575, DOI:10.1371/journal.pone.0120575, PDF [0.8MB]
- Bidleman T., Agosta K., Andersson A., Brorström-Lundén E., Haglund P., Hansson K., Laudon H., Newton S., Nygren O., Ripszam M., Tysklind M., and Wiberg K. (2015): Atmospheric pathways of chlorinated pesticides and natural bromoanisoles in the northern Baltic Sea and its catchment. AMBIO, 44:472-483, DOI:10.1007/s13280-015-0666-4, PDF [1.6MB]
- Bishop K. and Seibert J. (2015): A primer for hydrology: the beguiling simplicity of Water's journey from rain to stream at 30. Hydrological Processes, 29:3443-3446, DOI:10.1002/hyp.10516
- Burrows R.M., Hotchkiss E.R., Jonsson M., Laudon H., McKie B.G., and Sponseller R.A. (2015): Nitrogen limitation of heterotrophic biofilms in boreal streams. Freshwater Biology, 60:1237-1251, DOI:10.1111/fwb.12549
- Campioli M., Vicca S., Luyssaert S., Bilcke J., Ceschia E., Chapin III F.S., Ciais P., Fernández-Martínez M., Malhi Y., Obersteiner M., Olefeldt D., Papale D., Piao S.L., Peñuelas J., Sullivan P.F., Wang X., Zenone T., and Janssens I.A. (2015): Biomass production efficiency controlled by management in temperate and boreal ecosystems. Nature Geoscience, 8:843-846, DOI:10.1038/ngeo2553
- Creamer R.E., Stone D., Berry P., and Kuiper I. (2015): Measuring respiration profiles of soil microbial communities across Europe using MicroRespTM method. Applied Soil Ecology, 97:36-43, DOI:10.1016/j.apsoil.2015.08.004
- Creamer R.E., Hannula S.E., Van Leeuwen J.P. et al. (2015): Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology, 97:112-124, DOI:10.1016/j.apsoil.2015.08.006
- Creed I.F., McKnight D.M., Pellerin B.A., Green M.B., Bergamaschi B.A., Aiken G. R., Burns D.A., Findlay S.E.G., Shanley J.B., Striegl R.G., Aulenbach B.T., Clow D.W., Laudon H., McGlynn B.L., McGuire K.J., Smith R.A., and Stackpoole S.M. (2015): The river as a chemostat: Fresh perspectives on dissolved organic matter flowing down the river continuum. Canadian Journal of Fisheries and Aquatic Sciences, 72:1272-1285, DOI:10.1139/cjfas-2014-0400
- Eklöf K., Kraus A., Futter M., Schelker J., Meili M., Boyer E.W., and Bishop K. (2015): Parsimonious model for simulating total mercury and methylmercury in boreal streams based on riparian flow paths and seasonality. Environmental Science & Technology, 49:7851-7859, DOI:10.1021/acs.est.5b00852
- Filipovic M., Laudon H., McLachlan M.S., and Berger U. (2015): Mass balance of perfluorinated alkyl acids in a pristine boreal catchment. Environmental Science & Technology, 49:12127-12135, DOI:10.1021/acs.est.5b03403
- Gundale M.J., Nilsson M.-C., Pluchon N., and Wardle D.A. (2015): The effect of biochar management on soil and plant community properties in a boreal forest. Global Change Biology - Bioenergy, 8:777-789, DOI:10.1111/gcbb.12274
- Henriksson N., Tarvainen L., Lim H., Tor-Ngern P., Palmroth S., Oren R., Marshall J., and Näsholm T. (2015): Stem compression reversibly reduces phloem transport in Pinus sylvestris trees. Tree Physiology, 35:1075-1085, DOI:10.1093/treephys/tpv078
- Hytteborn J.K., Temnerud J., Alexander R.B., Boyer E.W., Futter M.N., Fröberg M., Dahné J., and Bishop K.H. (2015): Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape. Science of The Total Environment, 520:260-269, DOI:10.1016/j.scitotenv.2015.03.041
- Jantze E.J., Laudon H., Dahlke H.E., and Lyon S.W. (2015): Spatial variability of dissolved organic and inorganic carbon in sub-arctic headwater streams. Arctic, Antarctic, and Alpine Research, 47:529-546, DOI:10.1657/AAAR0014-044
- Johansson S., Carlqvist K., Kataria R., Ulvcrona T., Bergsten U., Arshadi M., Galbe M., and Lidén G. (2015): Implications of differences in macromolecular composition of stem fractions for processing of Scots pine. Wood Science and Technology, 49:1037-1054, DOI:10.1007/s00226-015-0739-3
- Kadygrov N., Broquet G., Chevallier F., River L., Gerbig C., and Ciais P. (2015): On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe. Atmospheric Chemistry and Physics, 15:12765-12787, DOI:10.5194/acp-15-12765-2015, PDF [6.1MB]
- Kothawala D.N., Ji X., Laudon H., Ågren A.M., Futter M.N., Köhler S.J., and Tranvik L.J. (2015): The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams. Journal of Geophysical Research - Biogeosciences, 120:1491-1505, DOI:10.1002/2015JG002946
- Kugler F., Lee S.-K., Hajnsek I., and Papathanassiou K.P. (2015): Forest height estimation by means of Pol-InSAR data inversion: The role of the vertical wavenumber. IEEE Transactions on Geoscience and Remote Sensing, 53:5294-5311, DOI:10.1109/TGRS.2015.2420996
- Kuglerová L., Jansson R., Sponseller R.A., Laudon H., and Malm-Renöfält B. (2015): Local and regional processes determine plant species richness in a river-network metacommunity. Ecology, 96:381-391, DOI:10.1890/14-0552.1
- Lam N., Nathanson M., Lundgren N., Rehnström R., and Lyon S.W. (2015): A cost-effective laser scanning method for mapping stream channel geometry and roughness. Journal of the American Water Resources Association (JAWRA), 51:1211-1220, DOI:10.1111/1752-1688.12299
- Ledesma J.L.J., Grabs T., Bishop K.H., Schiff S.L., and Köhler S.J. (2015): Potential for long-term transfer of dissolved organic carbon from riparian zones to streams in boreal catchment. Global Change Biology, 21:2963-2979, DOI:10.1111/gcb.12872
- Leith F.I., Dinsmore K.J., Wallin M.B., Billett M.F., Heal K.V., Laudon H., Öquist M.G., and Bishop K. (2015): Carbon dioxide transport across the hillslope-riparian-stream continuum in a boreal headwater catchment. Biogeosciences, 12:1881-1892, DOI:10.5194/bg-12-1881-2015
- Lyon S.W., Nathanson M., Lam N., Dahlke H.E., Rutzinger M., Kean J.W., and Laudon H. (2015): Can low-resolution airborne laser scanning data be used to model stream rating curves? Water, 7:1324-1339, DOI:10.3390/w7041324
- Maaroufi N.I., Nordin A., Hasselqvist N.J., Bach L.H., Palmqvist K., and Gundale M.J. (2015): Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Global Change Biology, 21:3169-3180, DOI:10.1111/gcb.12904
- Peralta-Tapia A., Sponseller R.A., Tetzlaff D., Soulsby C., and Laudon H. (2015): Connecting precipitation inputs and soil flow pathways to stream water in contrasting boreal catchments. Hydrological Processes, 29:3546-3555, DOI:10.1002/hyp.10300
- Peralta-Tapia A., Sponseller R.A., Ågren A., Tetzlaff D., Soulsby C., and Laudon H. (2015): Scale-dependent groundwater contributions influence patterns of winter baseflow stream chemistry in boreal catchments. Journal of Geophysical Research - Biogeosciences, 120:847-858, DOI:10.1002/2014JG002878
- Santoro M., Eriksson L.E., and Fransson J.E.S. (2015): Reviewing ALOS PALSAR backscatter observations for stem volume retrieval in Swedish forest. Remote Sensing, 7:4290-4317, DOI:10.3390/rs70404290
- Schelker J., Sponseller R., Ring E., Högbom L., Löfgren S., and Laudon H. (2015): Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms. Biogeosciences Discussions, 12:12061-12089, DOI:10.5194/bgd-12-12061-2015
- Temnerud J., von Brömssen C., Fölster J., Buffam I., Andersson J.-O., Nyberg L., and Bishop K. (2015): Map-based prediction of organic carbon in headwaters streams improved by downstream observations from the river outlet. Biogeosciences Discussions, 12:9005-9041, DOI:10.5194/bgd-12-9005-2015
- Tetzlaff D., Buttle J., Carey S.K., McGuire K., Laudon H., and Soulsby C. (2015): Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review. Hydrological Processes, 29:3475-3490, DOI:10.1002/hyp.10412
- Tetzlaff D., Buttle J., Carey S.K., van Huijgevoort M.H.J., Laudon H., McNamara J.P., Mitchell C.P.J., Spence C., Gabor R.S., and Soulsby C. (2015): A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models. Hydrological Processes, 29:5153-5173, DOI:10.1002/hyp.10515, PDF [3.4MB]
- Teutschbein C., Grabs T., Karlsen R.H., Laudon H., and Bishop K. (2015): Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region. Water Resources Research, 51:9425-9446, DOI:10.1002/2015WR017337
- Ågren A.M., Lidberg W., and Ring E. (2015): Mapping temporal dynamics in a forest stream network-implications for riparian forest management. Forests, 6:2982-3001, DOI:10.3390/f6092982
- Åkerblom S., Meili M., and Bishop K. (2015): Organic matter in rain: An overlooked influence on mercury deposition. Environmental Science & Technology Letters, 2:128-132, DOI:10.1021/acs.estlett.5b00009