Norunda
General
The site was established in 1994 and is operated today by
Lund University with station PI Meelis Mölder.
The site has been used for studies of exchanges of greenhouse gases (CO2
and CH4), energy and water using micrometeorological methods (eddy covariance
and gradient).
Within ICOS is Norunda a combined atmosphere and ecosystem station.
Data download
Data from Norunda can be downloaded from the ICOS Carbon Portal.ICOS Level2 data from the Atmosphere Station (GHG concentrations, air temperature, wind). ICOS Level2 data from the Ecosystem Station (flux data, meteorological data, soil meteorological variables, ancillary data)
Location
The Norunda research station (60°05′N, 17°29′E, 46 m asl) is located
about 30 km north of Uppsala, i.e., in the southern part of the boreal forest
zone. The area is flat with small-scale variations in altitude (up to 10 m).
Clear cut in 2021
Beginning in 2021/2 the area ca 300 m around the main tower will be turned into a
clear cut as the trees reached the age of harvesting
long time ago. This gives a rather unique research opportunity in many aspects. We will
carry on with our measurements but we would also like to invite other
researchers to join us and carry out their own measurements during this
interesting transition period.
Time-line and area of the planned clear-cut. The orange dot
indicates the main tower.
Click to enlarge.
Contact
The Norunda team (from left to right):
research engineer
Irene Lehner,
station principal investigator
Meelis Mölder, and
research engineer
Anders Båth.
You are welcome!
ICOS Sweden invites other research groups to use the infrastructure.
Please fill in our
web form.
Geology and Soil
The bedrock is characterised by granite and gneiss (incl. leptite)
from the Svecokarelian orogen.
The soils are sandy-loamy tills with a high content of stones and blocks, characterized as podzolised dystric regosols, with a thin organic layer on top. The area is rich in organic soils with surface peat cover and fens.
Because of the presence of stones and blocks the soil surface is highly uneven.
Geological map (1:50'000) of the area around the tower. The tower
is located in the center of the map. The map is
generated with the map generator of the Geological
Survey of Sweden (SGU).
Click to enlarge.
Soil map (1:50'000) of the area around the tower. The tower
is located in the center of the map. The map is
generated with the map generator of the Geological
Survey of Sweden (SGU).
Click to enlarge.
Vegetation
The site is dominated by Norway spruce (Picea abies) and Scots pine
(Pinus sylvestris) with a small fraction (15%) of deciduous trees,
mainly birch (Betula sp.). The shrub layer is dominated by bilberry
(Vaccinium myrtillus L.), lingonberry (Vaccinium vitis-idaea L.),
moss, and flowers.
The site contains stands of various age and height, but within a 1 km radius, old (110 years) and middle-aged (60-80 years) forest of about 25 m height dominate.
The canopy density varies mainly depending on species composition and the Leaf Area Index (LAI) is typically in the range 3-6, but can be as high as 7.
The forest has been managed at least for the last 200 years. It is owned and managed by the common of the Norunda jurisdictional district (Norunda Härad).
About 100 years ago, a large area around the site was drained by ditching, which lowered the average water table. This increased forest productivity, but is likely to have accelerated the decomposition of soil organic matter, thus affecting the overall carbon balance.
The trees around the tower reached the age of harvesting long time ago. In 2021, an area of ca 80 ha around the main tower will be turned into a clear cut. This creates a rather unique research situation. Measurements from the last almost three decades of the forest's life cycle will be available by then, and we will monitor the start of a new life cycle of our forest.
Vegetation map of Norunda.
Blue areas around the tower represent more than 100 years
old forest. Small brown spots south of the tower are small
openings. Green-yellow areas in the northern sector and
SSW are younger forests, 50-70 years old. Brown areas in the
W, S and E are mostly clear cuts of different ages. In the
N is a lake. Brown close to the lake is wetland. There are
also some clear cuts in yellow color in that direction.
Click to enlarge.
Satellite images of Norunda for 2006, 2009, and 2015 (from Google Earth).
The tower is located in the middle of the images. The dimension of the images is about 2.5 km
in East-West and 1.5 km in North-South direction.
Click to enlarge.
Actual phenocam picture of the understorey in Norunda. (The picture is
updated hourly during daytime.)
Click to enlarge.
Climate
With a mean annual air temperature of 5.6°C and a mean annual precipitation of
544 mm (data period 1961-1990, SMHI
station Uppsala) the climate is characterized after Köppen as a Dfb-climate,
i.e. humid continental with moderate summers and cold winters. Southwest is the
prevailing wind direction in Norunda.
Climate Diagram Uppsala (1961-1990, SMHI station Uppsala). The diagram displays monthly averages
for temperature and precipitation. When the precipitation curve undercuts the temperature curve,
this indicates dry season. When the precipitation curve exceeds the temperature curve, this
indicates moist season.
Click to enlarge.
Wind rose Norunda.
Click to enlarge.
Data from 2014-01-01 until 2016-11-20 measured with a
sonic anemometer
.
Where does the air come from that is measured at 36 m height at the tower?
Footprint area for July 2014 in Norunda. Each contour line adds 10%
contribution starting at the tower (red dot); the background map is an
illustration of the vegetation height. Calculation done by N. Kljun, Swansea University.
Click to enlarge.
Non-ICOS measurements
Additional research at the site and a next by clear-cut focuses
on exchanges of greenhouse gases (carbon dioxide CO2,
methane CH4, water vapour H2O, and laugh
gas N2O) and its driving forces in all components of
a forest ecosystem.
For more detailed information please contact Meelis Mölder.
ICOS measurements
All related, continuous, automatic measurements are listed below in alphabetical order.
The measurements are carried out either on the 102 m high tower, at the earth
surface, in the four soil pits or on the four trees. All measurements are
carried out within a distance of about 200 m of the tower.
Variable | Measurement height (m) | |
air pressure | ||
air temperature | 28 | |
profile | 0.85, 3.5, 8.4, 13.65, 19.65, 25.45, 28.5, 31.65, 36.8, 43.65, 58.45, 72.9, 87.4, 100.55 | |
flux system | 36 | |
carbon dioxide (CO2) | profile | 0.8, 3.35, 8.7, 13.95, 19.95, 25.75, 28.8, 31.95, 37.1, 43.95 58.75, 73.2, 87.7, 100.85 |
flux system | 36 | |
atmospheric system | 32, 58, 100 | |
carbon monoxide (CO) | atmospheric system | 32, 58, 100 |
ground water level | ||
methane (CH4) | atmospheric system | 32, 58, 100 |
PAR | 2 transects in the canopy with each 8 sensors | 1 |
incoming and outgoing | 55 | |
diffuse and total incoming | 101.5 | |
precipitation | 1.5 | |
snow depth | ||
soil heat flux | 4x together with each profile | -0.05 |
soil moisture | 4 profiles | 0 to -0.06 (vertical), -0.05, -0.1, -0.3, -0.5 |
soil temperature | 4 profiles | -0.02, -0.05, -0.1, -0.3, -0.5 |
solar radiation | incoming | 101.5 |
incoming and outgoing | 55 | |
sunshine duration | 101.5 | |
surface temperature | target temperature | |
terrestrial radiation | incoming and outgoing | 55 |
tree temperature | 2 spruce and 2 pine with 3 levels, and 4 sensors at each level (facing N, E, S, and W) | 3, 11, 21 |
water vapour | 28 | |
profile | 0.8, 3.35, 8.7, 13.95, 19.95, 25.75, 28.8, 31.95, 37.1, 43.95 58.75, 73.2, 87.7, 100.85 | |
flux system | 36 | |
atmospheric system | 32, 59, 100 | |
wind vector | flux system | 36 |
Collaborations
As an infrastructure we are welcoming other research groups
to carry out their projects at our station. Actually, we have - among others -
the following projects that have joined at the Norunda station:
- ACTRIS
- Effects of Forest Management and Natural Disturbance on Greenhouse Gas Exchange in Boreal Forests
- ICOS INWIRE: This project is actually finished, but the current near-realtime data is still accessible.
- NordSpec
- Trenching experiment
- Upscaling of surface greenhouse gas flux measurements
- Monitoring of pesticides in atmospheric deposition
- EMEP
Facilities
Besides several small cabins for equipment has Norunda a main house and
a workshop building.
The main house is equipped with three bedrooms (total 5 beds),
a shower/toilet bath room, and a fully equipped kitchen that
is also used as office/meeting room. There is even a simple
lab (separate entrance).
Station building in Norunda.
Workshop building in Norunda.
Kitchen/office in Norunda.
Publications (peer-reviewed articles and theses)
-
2019
- Lagergren F., Jönsson A.M., Linderson H., and Lindroth A. (2019): Time shift between net and gross CO2 uptake and growth derived from tree rings in pine and spruce. Trees, 33(3):765-776; DOI:10.1007/s00468-019-01814-9
-
2018
- Hari P., Noe S., Dengel S., Elbers J., Gielen B., Kerminen V.-M., Kruijt B., Kulmala L., Lindroth A., Mammarella I., Petälä T., Schurgers G., Vanhatalo A., Kulmala M., and Bäck J. (2018): Prediction of photosynthesis in Scots pine ecosystems across Europe by a needle-level theory. Atmospheric Chemistry and Physics, 18:13321-13328, DOI:10.5194/acp-18-13321-2018
- Kaisermann A., Ogée J., Sauze J., Wohl S., Jones S.P., Gutierrez A., and Wingate L. (2018): Disentangling the rates of carbonyl sulfide (COS) production and consumption and their dependency on soil properties across biomes and land use types. Atmospheric Chemistry and Physics, 18:9425-9440, DOI:10.5194/acp-18-9425-2018
- Kovalets I., Avila R., Mölder M., Kovalets S., and Lindroth A. (2018): Verification of a one-dimensional model of CO2 atmospheric transport inside and above a forest canopy using observations at the Norunda Research Station. Boundary-Layer Meteorology, pp 24, DOI:10.1007/s10546-018-0340-z
- Lindroth A., Holst J., Heliasz M., Vestin P., Lagergren F., Biermann T., Cai Z., and Mölder M. (2018): Effects of low thinning on carbon dioxide fluxes in a mixed hemiboreal forest. Agricultural and Forest Meteorology, 262:59-70, DOI:10.1016/j.agrformet.2018.06.021
- Meredith L.K., Boye K., Youngerman C., Whelan M., Ogée J., Sauze J., and Wingate L. (2018): Coupled biological and abiotic mechanisms driving carbonyl sulfide production in soils. Soil Systems, 2(3):37, DOI:10.3390/soilsystems2030037
- Nicolini G., Aubinet M., Feigenwinter C., Heinesch B., Lindroth A., Mamadou O., Moderow U., Mölder M., Montagnani L., Rebmann C., and Papale D. (2018): Impact of CO2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance. Agricultural and Forest Meteorology, 248:228-239, DOI:10.1016/j.agrformet.2017.09.025
- Wang M. (2018): Characteristics of BVOC emissions from a Swedish boreal forest - Using chambers to capture biogenic volatile organic compounds (BVOCs) from trees and forest floor. PhD thesis, Lund University, Lund, pp 171, ISBN:978-91-85793-89-1
- Wang M., Schurgers G., Hellén H., Lagergren F., and Holst T. (2018): Biogenic volatile organic compound emissions from a boreal forest floor. Boreal Environment Research, 23:249-265
-
2017
- Bye I.J., North P.R.J., Los S.O., Kljun N., Rosette J.A.B., Hopkinson C., Chasmer L., and Mahoney C. (2017): Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model. Remote Sensing of Environment, 188:177-189, DOI:10.1016/j.rse.2016.10.048
- Cai Z., Jönsson P., Jin H., Eklundh L. (2017): Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sensing, 9(12):1271, DOI:10.3390/rs9121271
- Gottselig N., Amelung W., Kirchner J.W. et al. (2017): Elemental composition of natural nanoparticles and fine colloids in European forest stream waters and their role as phosphorus carriers. Global Biochemical Cycles, 31:1592-1607, DOI:10.1002/2017GB005657
- Pulliainen J., Aurela M., Laurila T. et al. (2017): Early snowmelt significantly enhances boreal springtime carbon uptake. PNAS, 114(42):11081-11086, DOI:10.1073/pnas.1707889114
- van Meeningen Y. (2017): Is genetic diversity more important for terpene emissions than latitudinal adaptation?: Using genetically identical trees to better understand emission fluctuations across a European gradient. PhD thesis, Lund University, Lund, pp 149, ISBN:978-91-85793-81-5
- van Meeningen Y., Wang M., Karlsson T., Seifert A., Schurgers G., Rinnan R., and Holst T. (2017): Isoprenoid emission variation of Norway spruce across a European latitudinal transect. Atmospheric Environment, 170:45-57, DOI:10.1016/j.atmosenv.2017.09.045, PDF [1.4MB]
- Vestin P. (2017): Effects of forest management on greenhouse gas fluxes in a boreal forest. PhD thesis, Lund University, Lund, pp 199, ISBN:978-91-85793-83-9
- Wang M., Schurgers G., Arneth A., Ekberg A. & Holst T. (2017): Seasonal variation in biogenic volatile organic compound (BVOC) emissions from Norway spruce in a Swedish boreal forest. Boreal Environment Research, 22:353-367,ISSN 1797-2469, PDF [0.5MB]
-
2016
- Launiainen S., Katul G.G., Kolari P., Lindroth A., Lohila A., Aurela M., Varlagin A., Grelle A., and Vesala T. (2016): Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area? Global Change Biology, 22:4096-4113, DOI:10.1111/gcb.13497
- Minunno F., Peltoniemi M., Launiainen S., Aurela M., Lindroth A., Lohila A., Mammarella I., Minkkinen K., and Mäkelä A. (2016): Calibration and validation of a semi-empirical flux ecosystem model for coniferous forests in the Boreal region. Ecological Modelling, 341:37-52, DOI:10.1016/j.ecolmodel.2016.09.020
- Yao Y., Liang S., Li X. et al. (2016): Assessment and simulation of global terrestrial latent heat flux by synthesis of CMIP5 climate models and surface eddy covariance observations. Agricultural and Forest Meteorology, 223:151-167, DOI:10.1016/j.agrformet.2016.03.016
-
2015
- Gouttevin I., Lehning M., Jonas T., Gustafsson D., and Mölder M. (2015): A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741). Geoscientific Model Development, 8:2379-2398, DOI:10.5194/gmd-8-2379-2015, PDF [1.6MB]
- Kadygrov N., Broquet G., Chevallier F., River L., Gerbig C., and Ciais P. (2015): On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe. Atmosheric Chemistry and Physics, 15:12765-12787, DOI:10.5194/acp-15-12765-2015, PDF [6.1MB]
- Sundqvist E., Persson A., Kljun N., Vestin P., Chasmer L., Hopkinson C., and Lindroth A. (2015): Upscaling of methane exchange in a boreal forest using soil chamber measurements and high-resolution LiDAR elevation data. Agricultural and Forest Meteorology, 214-215:393-401, DOI:10.1016/j.agrformet.2015.09.003
- Sundqvist E., Mölder M., Crill P., Kljun N., and Lindroth A. (2015): Methane exchange in a boreal forest estimated by gradient method. Tellus B, 67:26688, DOI:10.3402/tellusb.v67.26688, PDF [3.9MB]
- Schurgers G., Lagergren F., Mölder M., and Lindroth A. (2015): The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest. Biogeosciences, 12:237-256, DOI:10.5194/bg-12-237-2015
- Wingate L., Ogée J., Cremonese E. et al. (2015): Interpreting canopy development and physiology using a European phenology camera network at flux sites. Biogeosciences, 12:5995-6015, DOI:10.5194/bg-12-5995-2015, PDF [4.2MB]
-
2014
- Mahoney C., Kljun N., Los S.O., Chasmer L., Hacker J.M., Hopkinson C., North P.R.J., Rosette J.A.B., and van Gorsel E. (2014): Slope estimation from ICESat/GLAS. Remote Sensing, 6:10051-10069, DOI:10.3390/rs61010051, PDF [3.2MB]
- Sundqvist E. (2014): Methane exchange in a boreal forest: the role of soils, vegetation, and forest management. PhD thesis, Lund University, Lund, pp 159, ISBN:978-91-85793-39-6
- Sundqvist E., Vestin P., Crill P., Persson T., and Lindroth A. (2014): Short-term effects of thinning, clear-cutting and stump harvesting on methane exchange in a boreal forest. Biogeosciences, 11:6095-6105, DOI:10.5194/bg-11-6095-2014, PDF [3.2MB]
- Yuan W., Liu S., Dong W., et al. (2014): Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome. Nature Communications, 5:4270, DOI:10.1038/ncomms5270
-
2013
- Acosta M., Pavelka M., Montagnani L., Kutsch W., Lindroth A., Juszczak R., and Janouš D. (2013): Soil surface CO2 efflux measurements in Norway spruce forests: Comparison between four different sites across Europe - from boreal to alpine forest. Geoderma, 192:295-303, DOI:10.1016/j.geoderma.2012.08.027
- Rasmus S., Gustafsson D., Koivusalo H., et al. (2013): Estimation of winter leaf area index and sky view fraction for snow modelling in boreal coniferous forests: consequences on snow mass and energy balance. Hydrological Processes, 27:2876-2891, DOI:10.1002/hyp.9432
- Schrumpf M., Kaiser K., Guggenberger G., Persson T., Kögel-Knabner I., and Schulze E.-D. (2013): Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences, 10:1675-1691, DOI:10.5194/bg-10-1675-2013, PDF [2.9MB]
-
2012
- Delpierre N., Soudani K., François C., Le Maire G., Bernhofer C., Kutsch W., Misson L., Rambal S., Vesala T., and Dufrêne E. (2012): Quantifying the influence of climate and biological drivers on the interannual variability of carbon exchanges in European forests through process-based modelling. Agricultural and Forest Meteorology, 154-155:99-112, DOI:10.1016/j.agrformet.2011.10.010
- Kvon E.V., Tuulik J., Mölder M., and Lindroth A. (2012): Modelling regional surface energy exchange and boundary layer development in boreal Sweden - comparison of mesoscale model (RAMS) simulations with aircraft and tower observations. Atmosphere, 3:537-556, DOI:10.3390/atmos3040537, PDF [1.2MB]
- Niu S., Luo Y., Fei S., et al. (2012): Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 194:775-783, DOI:10.1111/j.1469-8137.2012.04095.x, PDF [1.5MB]
- Schubert P., Lagergren F., Aurela M., et al. (2012): Modeling GPP in the Nordic forest landscape with MODIS time series data - Comparison with the MODIS GPP product. Remote Sensing of Environment, 126:136-147, DOI:10.1016/j.rse.2012.08.005
- Sundqvist E., Crill P., Mölder M., Vestin P., and Lindroth A. (2012): Atmospheric methane removal by boreal plants. Geophysical Research Letters, 39:L21806, DOI:10.1029/2012GL053592, PDF [0.4MB]
-
2011
- Bellassen V., Delbart N., Le Maire G., Luyssaert S., Ciais P., and Viovy N. (2011): Potential knowledge gain in large-scale simulations of forest carbon fluxes from remotely sensed biomass and height. Forest Ecology and Management, 261:515-530, DOI:10.1016/j.foreco.2010.11.002
- Eklundh L., Jin H., Schubert P., Guzinski R., and Heliasz M. (2011): An optical sensor network for vegetation phenology monitoring and satellite data calibration. Sensors, 11:7678-7709, DOI:10.3390/s110807678, PDF [4.6MB]
- Groenendijk M., Dolman A.J., van der Molen M.K., et al. (2011): Assessing parameter variability in a photosynthesis model within and between plant functional types using global Fluxnet eddy covariance data. Agricultural and Forest Meteorology, 151:22-38, DOI:10.1016/j.agrformet.2010.08.013
- Jung M., Reichstein M., Margolis H.A., et al. (2011): Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences, 116:G00J07, DOI:10.1029/2010JG001566, PDF [3.6MB]
- Mao J., Phipps S.J., Pitman A.J., Wang Y.P., Abramowitz G., and Pak B. (2011): The CSIRO Mk3L climate system model v1.0 coupled to the CABLE land surface scheme v1.4b: Evaluation of the control climatology. Geoscientific Model Development, 4:1115-1131, DOI:10.5194/gmd-4-1115-2011, PDF [1.8MB]
- Moderow U. (2011): Energy balance of forests with special consideration of advection. PhD Thesis, TU Dresden, Dresden, pp. 53
- Moderow U., Feigenwinter C., and Bernhofer C. (2011): Non-turbulent fluxes of carbon dioxide and sensible heat - A comparison of three forested sites. Agricultural and Forest Meteorology, 151:692-708, DOI:10.1016/j.agrformet.2011.01.014
- Schrumpf M., Schulze E.D., Kaiser K., and Schumacher J. (2011): How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeosciences, 8:1193-1212, DOI:10.5194/bg-8-1193-2011, PDF [12MB]
- Yuan W., Luo Y., Li X., et al. (2011): Redefinition and global estimation of basal ecosystem respiration rate. Global Biogeochemical Cycles, 25:GB4002 , DOI:10.1029/2011GB004150, PDF [1.7MB]
- Yuan W., Luo Y., Liang S., et al. (2011): Thermal adaptation of net ecosystem exchange. Biogeosciences, 8:1453-1463, DOI:10.5194/bg-8-1453-2011, PDF [3.4MB]
-
2010
- Alton P. and Bodin P. (2010): A comparative study of a multilayer and a productivity (light-use) efficiency land-surface model over different temporal scales. Agricultural and Forest Meteorology, 150:182-195, DOI:10.1016/j.agrformet.2009.10.001
- Aubinet M., Feigenwinter C., Heinesch B., Bernhofer C., Canepa E., Lindroth A., Montagnani L., Rebmann C., Sedlak P., and van Gorsel E. (2010): Direct advection measurements do not help to solve the night-time CO2 closure problem: Evidence from three different forests. Agricultural and Forest Meteorology, 150:655-664, DOI:10.1016/j.agrformet.2010.01.016
- Beer C., Reichstein M., Tomelleri E., et al. (2010): Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329:834-838, DOI:10.1126/science.1184984
- Chen S., Huang Y., Zou J., Shen Q., Hu Z., Qin Y., Chen H., and Pan G. (2010): Modeling interannual variability of global soil respiration from climate and soil properties. Agricultural and Forest Meteorology, 150:590-605, DOI:10.1016/j.agrformet.2010.02.004
- Feigenwinter C., Mölder M., Lindroth A., and Aubinet M. (2010): Spatiotemporal evolution of CO2 concentration, temperature, and wind field during stable nights at the Norunda forest site. Agricultural and Forest Meteorology, 150:692-701, DOI:10.1016/j.agrformet.2009.08.005
- Lindroth A., Mölder, and Lagergren F. (2010): Heat storage in forest biomass improves energy balance closure. Biogeosciences, 7:301-313, DOI:10.5194/bg-7-301-2010, PDF [0.9MB]
- Montagnani L., Manca G., Canepa E., and Georgieva E. (2010): Assessing the method-specific differences in quantification of CO2 advection at three forest sites during the ADVEX campaign. Agricultural and Forest Meteorology, 150:702-711, DOI:10.1016/j.agrformet.2010.01.013
- Nizzetto L., Macleod M., Borgå, et al. (2010): Past, present, and future controls on levels of persistent organic pollutants in the global environment - Understanding the legacy of persistent organic pollutants requires studying the transition from primary to secondary source control. Environmental Science and Technology, 44:6526-6531, DOI:10.1021/es100178f, PDF [2.9MB]
- Queck R. and Bernhofer C. (2010): Constructing wind profiles in forests from limited measurements of wind and vegetation structure. Agricultural and Forest Meteorology, 150:724-735, DOI:10.1016/j.agrformet.2010.01.012
- Yi C., Ricciuto D., Li R., et al. (2010): Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 5:034007, DOI:10.1088/1748-9326/5/3/034007, PDF [0.7MB]
-
2009
- Duursma R.A., Kolari P., Perämäki M., et al. (2009): Contributions of climate, leaf area index and leaf physiology to variation in gross primary production of six coniferous forests across Europe: A model-based analysis. Tree Physiology, 29:621-639, DOI:10.1093/treephys/tpp010, PDF [1MB]
- Feigenwinter C., Mölder M., Lindroth A., and Aubinet M. (2009): Spatiotemporal evolution of CO2 concentration, temperature, and wind field during stable nights at the Norunda forest site. Agricultural and Forest Meteorology, 150:692-701, DOI:10.1016/j.agrformet.2009.08.005
- Lankreijer H.J.M., Lindroth A., Strömgren M., Kulmala L., and Pumpanen J. (2009): Forest floor CO2 flux measurements with a dark-light chamber. Biogeosciences Discussions, 6:9301-9329, DOI:10.5194/bgd-6-9301-2009, PDF [7.4MB]
- Moderow U., Aubinet M., Feigenwinter C., Kolle O., Lindroth A., Mölder M., Montagnani L., Rebmann C., and Bernhofer C. (2009): Available energy and energy balance closure at four coniferous forest sites across Europe. Theoretical and Applied Climatology, 98:397-412, DOI:10.1007/s00704-009-0175-0, PDF [0.6MB]
- Moeckel C., Nizzetto L., Strandberg B., Lindroth A., and Jones K.C. (2009): Air-boreal forest transfer and processing of polychlorinated biphenyls. Environmental Science and Technology, 43:5282-5289, DOI:10.1021/es803505u
- Moeckel C., Harner T., Nizzetto L., Strandberg B., Lindroth A., and Jones K.C. (2009): Use of depuration compounds in passive air samplers: results from active sampling-supported field deployment, potential uses, and recommendations. Environmental Science and Technology, 43:3227-3232, DOI:10.1021/es802897x
- Schwalm C.R., Williams C.A., Schaefer K., et al. (2009): Assimilation exceeds respiration sensitivity to drought: A FLUXNET synthesis. Global Change Biology, 16:657-670, DOI:10.1111/j.1365-2486.2009.01991.x
- Thum T., Aalto T., Laurila T., Aurela M., Hatakka J., Lindroth A., and Vesala T. (2009): Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables. Tellus B, 61:701-717, DOI:10.1111/j.1600-0889.2009.00441.x
-
2008
- Abramowitz G. and Gupta H. (2008): Toward a model space and model independence metric. Geophysical Research Letters, 35:L05705, DOI:10.1029/2007GL032834, PDF [0.2MB]
- Alton P.B. (2008): Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agricultural and Forest Meteorology, 148:1641-1653, DOI:10.1016/j.agrformet.2008.05.014
- Feigenwinter C., Bernhofer C., Eichelmann U., et al. (2008): Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agricultural and Forest Meteorology, 148:12-24, DOI:10.1016/j.agrformet.2007.08.013
- Gibelin A.-L., Calvet J.-C., and Viovy N. (2008): Modelling energy and CO2 fluxes with an interactive vegetation land surface model - Evaluation at high and middle latitudes. Agricultural and Forest Meteorology, 148:1611-1628, DOI:10.1016/j.agrformet.2008.05.013
- Lagergren F., Lankreijer H., Kučera J., Cienciala E., Mölder M., and Lindroth A. (2008): Thinning effects on pine-spruce forest transpiration in central Sweden. Forest Ecology and Management, 255:2312-2323, DOI:10.1016/j.foreco.2007.12.047
- Lagergren F., Lindroth A., Dellwik E., Ibrom A., Lankreijer H., Launiainen S., Mölder M., Kolari P., Pilegaard K., and Vesala T. (2008): Biophysical controls on CO2 fluxes of three Northern forests based on long-term eddy covariance data. Tellus, 60:143-152, DOI:10.1111/j.1600-0889.2006.00324.x
- Lindroth A., Lagergren F., Aurela M., et al. (2008): Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests. Tellus, 60:129-142, DOI:10.1111/j.1600-0889.2007.00330.x
- Magnani F., Mencuccini M., Borghetti M., et al. (2008): Ecologically implausible carbon response? Reply. Nature, 451:E3-E4, DOI:10.1038/nature06580
- Mäkelä A., Pulkkinen M., Kolari P., Lagergren F., Berbigier P., Lindroth A., Loustau D., Nikinmaa E., Vesala T., and Hari P. (2008): Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology, 14:92-108, DOI:10.1111/j.1365-2486.2007.01463.x
- Olofsson P., Lagergren F., Lindroth A., Lindström J., Klemedtsson L., Kutsch W., and Eklundh L. (2008): Towards operational remote sensing of forest carbon balance across Northern Europe. Biogeosciences, 5:817-832, DOI:10.5194/bg-5-817-2008, PDF [0.9MB]
- Piao S., Ciais P., Friedlingstein P., et al. (2008): Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451:49-52, DOI:10.1038/nature06444
- Svensson M., Jansson P-E., Gustafsson D., Berggren Kleja D., Langvall O., and Lindroth A. (2008): Bayesian calibration of a model describing carbon, water and heat fluxes for a Swedish boreal forest stand. Ecological Modelling, 213:331-334, DOI:10.1016/j.ecolmodel.2008.01.001
- Thum T., Aalto T., Laurila T., Aurela M., Lindroth A., and Vesala T. (2008): Assessing seasonality of biochemical CO2 exchange model parameters from micrometeorological flux observations at boreal coniferous forest. Biogeosciences, 5:1625-1639, DOI:10.5194/bg-5-1625-2008, PDF [0.7MB]
- Wramneby A., Smith B., Zaehle S., and Sykes M.T. (2008): Parameter uncertainties in the modelling of vegetation dynamics - Effects on tree community structure and ecosystem functioning in European forest biomes. Ecological Modelling, 216:277-290, DOI:10.1016/j.ecolmodel.2008.04.013
-
2007
- Granier A., Reichstein M., Bréda N., et al. (2007): Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agricultural and Forest Meteorology, 143:123-145, DOI:10.1016/j.agrformet.2006.12.004
- Luyssaert S., Inglima I., Jung M., et al. (2007): CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13:2509-2537, DOI:10.1111/j.1365-2486.2007.01439.x
- Magnani F., Mencuccini M., Borghetti M., et al. (2007): The human footprint in the carbon cycle of established temperate and boreal forests. Nature, 447:848-850, DOI:10.1038/nature05847
- Olofsson P., van Laake P.E., and Eklundh L. (2007): Estimation of absorbed PAR across Scandinavia from satellite measurements: Part I: Incident PAR. Remote Sensing of Environment, 110:252-261, DOI:10.1016/j.rse.2007.02.021
- Olofsson P. and Eklundh L. (2007): Estimation of absorbed PAR across Scandinavia from satellite measurements. Part II: Modeling and evaluating the fractional absorption. Remote Sensing of Environment, 110:240-251, DOI:10.1016/j.rse.2007.02.020
- Olofsson P., Eklundh L., Lagergren F., Jönsson P., and Lindroth A. (2007): Estimating net primary production for Scandinavian forests using data from Terra/MODIS. Advances in Space Research, 39:125-130, DOI:10.1016/j.asr.2006.02.031
- Reichstein M., Papale D., Valentini R., et al. (2007): Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophysical Research Letters, 34:L01402, DOI:10.1029/2006GL027880, PDF [0.2MB]
-
2006
- Lagergren F., Grelle A., Lankreijer H., Mölder M., and Lindroth A. (2006): Current carbon balance of the forested area in Sweden and its sensitivity to global change as simulated by Biome-BGC. Ecosystems, 9:894-908, DOI:10.1007/s10021-005-0046-1
- Rodhe A. and Bockgård (2006): Groundwater recharge in a hard rock aquifer: A conceptual model including surface-loading effects. Journal of Hydrology, 330:389-401, DOI:10.1016/j.jhydrol.2006.03.032
- Verstraeten W.W., Veroustraete F., van der Sande C.J., Grootaers I., and Feyen J. (2006): Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sensing of Environment, 101:299-314, DOI:10.1016/j.rse.2005.12.016
-
2005
- Lagergren F., Eklundh L., Grelle A., Lundblad M., Mölder M., Lankreijer H., and Lindroth A. (2005): Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant, Cell and Environment, 28:412-423, DOI:10.1111/j.1365-3040.2004.01280.x, PDF [0.8MB]
-
2004
- Gioli B., Miglietta F., De Martino B., et al. (2004): Comparison between tower and aircraft-based eddy covariance fluxes in five European regions. Agricultural and Forest Meteorology, 127:1-16, DOI:10.1016/j.agrformet.2004.08.004
- Gustafsson D., Lewan E., and Jansson P.-E. : Modeling water and heat balance of the boreal landscape - comparison of forest and arable land in Scandinavia. Journal of Applied Meteorology, 43:1750-1767, DOI:10.1175/JAM2163.1, PDF [0.5MB]
- Lagergren F. and Lindroth A. (2004): Variation in sapflow and stem growth in relation to tree size, competition and thinning in a mixed forest of pine and spruce in Sweden. Forest Ecology and Management, 188:51-63, DOI:10.1016/j.foreco.2003.07.018
-
2003
- Gustafsson D., Lewan E., van den Hurk B.J.J.M., Viterbo P., Grelle A., Lindroth A., Cienciala E., Mölder M., Halldin S., and Lundin L.-C. (2003): Boreal forest surface parameterization in the ECMWF model - 1D test with NOPEX long-term data. Journal of Applied Meteorology and Climatology, 42:95-112, DOI:10.1175/1520-0450(2003)042<0095:BFSPIT>2.0.CO;2, PDF [0.6MB]
- Suni T., Berninger F., Vesala T., et al. (2003): Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biology, 9:1410-1426, DOI:10.1046/j.1365-2486.2003.00597.x
-
2002
- Falge E., Baldocchi D., Tenhunen J., et al. (2002): Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113:53-74, DOI:10.1016/S0168-1923(02)00102-8
- Falge E., Tenhunen J., Baldocchi D., et al. (2002): Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113:75-95, DOI:10.1016/S0168-1923(02)00103-X
- Gryning S-E., Halldin S., and Lindroth A. (2002): Area averaging of land surface-atmosphere fluxes in NOPEX: challenges, results and future perspectives. Boreal Environment Research, 7:379-387, ISSN:1239-6095
- Lagergren F. and Lindroth A. (2002): Transpiration response to soil moisture in pine and spruce trees in Sweden. Agricultural and Forest Meteorology, 112:67-85, DOI:10.1016/S0168-1923(02)00060-6
- Law B.E., Falge E., Gu L., et al. (2002): Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113:97-120, DOI:10.1016/S0168-1923(02)00104-1
- Lundblad M. and Lindroth A. (2002): Stand transpiration and sapflow density in relation to weather, soil moisture and stand characteristics. Basic and Applied Ecology, 3:229-243, DOI:10.1078/1439-1791-00099
- Veroustraete F., Sabbe H., and Eerens H. (2002): Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sensing of Environment, 83:376-399, DOI:10.1016/S0034-4257(02)00043-3
- Widén B. (2002): Seasonal variation in forest-floor CO2 exchange in a Swedish coniferous forest. Agricultural and Forest Meteorology, 111:283-297, DOI:10.1016/S0168-1923(02)00026-6
- Wilson K.B., Baldocchi D.D., Aubinet M., et al. (2002): Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research, 38:1294, DOI:10.1029/2001WR000989, PDF [0.4MB]
- Wilson K., Goldstein A., Falge E., et al. (2002): Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113:223-243, DOI:10.1016/S0168-1923(02)00109-0
-
2001
- Janssens I.A., Lankreijer H., Matteucci G., et al. (2001): Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7:269-278, DOI:10.1046/j.1365-2486.2001.00412.x
- Jarvis P.G., Dolman A.J., Schulze E.-D., et al. (2001): Carbon balance gradient in European forests: Should we doubt , ′surprising′ results? A reply to Piovesan & Adams. Journal of Vegetation Science, 12:145-150, DOI:10.1111/j.1654-1103.2001.tb02626.x
- Lundblad M. (2001): Variations in forest waterfluxes at local scale - effects of stand properties and weather. PhD thesis, Swedish University of Agricultural Sciences, Uppsala, ISBN:91-576-6073-5
- Lundblad M., Lagergren F., and Lindroth A. (2001): Evaluation of heat balance and heat dissipation methods for sapflow measurements in pine and spruce. Annals of Forest Science, 58:625-638, DOI:10.1051/forest:2001150, PDF [0.2MB]
- Morén A.-S., Lindroth A., and Grelle A. (2001): Water-use efficiency as a means of modelling net assimilation in boreal forests. Trees, 15:67-74, DOI:10.1007/s004680000078
- Widén B. and Majdi H. (2001): Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research, 31:786-796, DOI:10.1139/x01-012
-
2000
- Mölder M., Lindroth A., and Halldin S. (2000): Water vapor, CO2, and temperature profiles in and above a forest - accuracy assessment of an unattended measurement system. Journal of Atmospheric and Oceanic Technology, 17:417-425, DOI:10.1175/1520-0426(2000)017<0417:WVCATP>2.0.CO;2, PDF [0.2MB]
- Morén A.-S. and Lindroth A. (2000): CO2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology, 101:1-14, DOI:10.1016/S0168-1923(99)00160-4
- Morén A.-S., Lindroth A., Flower-Ellis J., Cienciala E., and Mölder M. (2000): Branch transpiration of pine and spruce scaled to tree and canopy using needle biomass distributions. Trees, 14:384-397, DOI:10.1007/PL00009774
- Valentini R., Matteucci G., Dolman A.J., et al. (2000): Respiration as the main determinant of carbon balance in European forests. Nature, 404:861-865, DOI:10.1038/35009084, PDF [0.2MB]
-
1999
- Baker J.R. and Luckman A.J. (1999): Microwave observations of boreal forests in the NOPEX area of Sweden and a comparison with observations of a temperate plantation in the United Kingdom. Agricultural and Forest Meteorology, 98-99:389-416, DOI:10.1016/S0168-1923(99)00111-2
- Bringfelt B., Heikinheimo M., Gustafsson N., Perov V., and Lindroth A. (1999): A new land-surface treatment for HIRLAM - comparisons with NOPEX measurements. Agricultural and Forest Meteorology, 98-99:239-256, DOI:10.1016/S0168-1923(99)00101-X
- Cienciala E. and Lindroth A. (1999): Analysis of carbon and water fluxes from the NOPEX boreal forest: comment. Journal of Hydrology, 218:92-94, DOI:10.1016/S0022-1694(99)00030-X
- Cienciala E., Kučera J., and Lindroth A. (1999): Long-term measurements of stand water uptake in Swedish boreal forest. Agricultural and Forest Meteorology, 98-99:547-554, DOI:10.1016/S0168-1923(99)00122-7
- Constantin J., Grelle A., Ibrom A., and Morgenstern K. (1999): Flux partitioning between understorey and overstorey in a boreal spruce/pine forest determined by the eddy covariance method. Agricultural and Forest Meteorology, 98-99:629-643, DOI:10.1016/S0168-1923(99)00129-X.
- Gottschalk L., Gryning S-E., Lindroth, A., et al. (1999): Scale aggregation - comparison of flux estimates from NOPEX. Agricultural and Forest Meteorology, 98-99:103-120, DOI:10.1016/S0168-1923(99)00142-2
- Grelle A., Lindroth A., and Mölder M. (1999): Seasonal variation of boreal forest surface conductance and evaporation. Agricultural and Forest Meteorology, 98-99:563-578, DOI:10.1016/S0168-1923(99)00124-0
- Gryning S.-E. and Batchvarova E. (1999): Regional heat flux over the NOPEX area estimated from the evolution of the mixed-layer. Agricultural and Forest Meteorology, 98-99:159-167, DOI:10.1016/S0168-1923(99)00095-7
- Halldin S. and Gryning S.E. (1999): Boreal forests and climate. Agricultural and Forest Meteorology, 98-99:1-4, DOI:10.1016/S0168-1923(99)00150-1
- Halldin S., Gryning S.E., Gottschalk L., Jochum A., Lundin L.C., and van de Griend A.A. (1999): Energy, water and carbon exchange in a boreal forest landscape - NOPEX experiences. Agricultural and Forest Meteorology, 98-99:5-29, DOI:10.1016/S0168-1923(99)00148-3
- Hiyama T., Sugita M., Bergström H., and Mölder M. (1999): Wind speed measurements in upper and lower boundary layer to determine regional momentum fluxes. Agricultural and Forest Meteorology, 98-99:145-158, DOI:10.1016/S0168-1923(99)00094-5
- Iritz Z., Lindroth A., Heikinheimo M., Grelle A., and Kellner E. (1999): Test of a modified Shuttleworth-Wallace estimate of boreal forest evaporation. Agricultural and Forest Meteorology, 98-99:605-620, DOI:10.1016/S0168-1923(99)00127-6
- Janson R. and Granat L. (1999): A foliar rinse study of the dry deposition of nitric acid to a coniferous forest. Agricultural and Forest Meteorology, 98-99:683-696, DOI:10.1016/S0168-1923(99)00133-1
- Janson R., De Serves C., and Romero R. (1999): Emission of isoprene and carbonyl compounds from a boreal forest and wetland in Sweden. Agricultural and Forest Meteorology, 98-99:671-681, DOI:10.1016/S0168-1923(99)00134-3
- Jansson P.-E., Cienciala E., Grelle A., Kellner E., Lindahl A., and Lundblad M. (1999): Simulated evapotranspiration form the Norunda forest stand during the growing season of a dry year. Agricultural and Forest Meteorology, 98-99:621-628, DOI:10.1016/S0168-1923(99)00128-8
- Kravka M., Krejzar T., and Čermák J. (1999): Water content in stem wood of large pine and spruce trees in natural forests in central Sweden. Agricultural and Forest Meteorology, 98-99:555-562, DOI:10.1016/S0168-1923(99)00123-9
- Lankreijer H., Lundberg A., Grelle A., Lindroth A., and Seibert J. (1999): Evaporation and storage of intercepted rain analysed by comparing two models applied to a boreal forest. Agricultural and Forest Meteorology, 98-99:595-604, DOI:10.1016/S0168-1923(99)00126-4
- Levy P.E., Grelle A., Lindroth A., Mölder M., Jarvis P.G., Kruijt B., and Moncrieff J.B. (1999): Regional-scale CO2 fluxes over central Sweden by a boundary layer budget method. Agricultural and Forest Meteorology, 98-99:169-180, DOI:10.1016/S0168-1923(99)00096-9
- Lundin L-C., Halldin S., Nord T., and Etzelmüller B. (1999): System of information in NOPEX - retrieval, use, and query of climate data. Agricultural and Forest Meteorology, 98-99:31-51, DOI:10.1016/S0168-1923(99)00147-1
- Lundin L.-C., Halldin S., Lindroth A., et al. (1999): Continuous long-term measurements of soil-plant-atmosphere variables at a forest site. Agricultural and Forest Meteorology, 98-99:53-73, DOI:10.1016/S0168-1923(99)00092-1
- Mölder M. and Lindroth A. (1999): Thermal roughness length of a boreal forest. Agricultural and Forest Meteorology, 98-99:659-670, DOI:10.1016/S0168-1923(99)00132-X
- Mölder M., Grelle A., Lindroth A., and Halldin S. (1999): Flux-profile relationships over a boreal forest - roughness sublayer corrections. Agricultural and Forest Meteorology, 98-99:645-658, DOI:10.1016/S0168-1923(99)00131-8
- Morén A.-S. (1999): Modelling branch conductance of Norway spruce and Scots pine in relation to climate. Agricultural and Forest Meteorology, 98-99:579-593, DOI:10.1016/S0168-1923(99)00125-2
- Nilson T., Anniste J., Lang M., and Praks J. (1999): Determination of needle area indices of coniferous forest canopies in the NOPEX region by ground-based optical measurements and satellite images. Agricultural and Forest Meteorology, 98-99:449-462, DOI:10.1016/S0168-1923(99)00115-X
- Samuelsson P. and Tjernström M. (1999): Airborne flux measurements in NOPEX: comparison with footprint estimated surface heat fluxes. Agricultural and Forest Meteorology, 98-99:205-225, DOI:10.1016/S0168-1923(99)00098-2
- Saxena R.K., Jaedicke C., and Lundin L.-C. (1999): Comparison mass-balance, bulk aerodynamic and bowen ratio methods. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 24:851-859, DOI:10.1016/S1464-1909(99)00092-1
- Van de Griend A.A. and Seyhan E. (1999): Multi-temporal analysis of ERS-1 and EMISAR C-band VV backscattering properties of forest and lake surfaces in the NOPEX region. Agricultural and Forest Meteorology, 98-99:363-374, DOI:10.1016/S0168-1923(99)00109-4
- Venäläinen A., Frech M., Heikinheimo M., and Grelle A. (1999): Comparison of latent and sensible heat fluxes over boreal lakes with concurrent fluxes over a forest: implications for regional averaging. Agricultural and Forest Meteorology, 98-99:535-546, DOI:10.1016/S0168-1923(99)00100-8
-
1998
- Cienciala E., Kučera J., Ryan M.G., and Lindroth A. (1998): Water flux in boreal forest during two hydrologically contrasting years; species specific regulation of canopy conductance and transpiration. Annales des Sciences Forestieres, 55:47-61, DOI:10.1051/forest:19980104, PDF [1MB]
- Cienciala E., Running S.W., Lindroth A., Grelle A., and Ryan M.G. (1998): Analysis of carbon and water fluxes from the NOPEX boreal forest: comparison of measurements with FOREST-BGC simulations. Journal of Hydrology, 212-213:62-78, DOI:10.1016/S0022-1694(98)00202-9
- Frech M., Samuelsson P., Tjernström M., and Jochum A.M. (1998): Regional surface fluxes over the NOPEX area. Journal of Hydrology, 212-213:155-171, DOI:10.1016/S0022-1694(98)00207-8
- Halldin S., Gottschalk L., van de Griend A.A., Gryning S.-E., Heikinheimo M., Högström U., Jochum A., and Lundin L.-C. (1998): NOPEX - a northern hemisphere climate processes land surface experiment. Journal of Hydrology, 212-213:172-187, DOI:10.1016/S0022-1694(98)00208-X
- Lindroth A., Grelle A., and Morén A.-S. (1998): Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biology, 4:443-450, DOI:10.1046/j.1365-2486.1998.00165.x
- Martin P.H., Valentini R., Jacques R., et al. (1998): New estimate of the carbon sink strength of EU forests integrating flux measurements, field surveys, and space observations: 0.17-0.35 Gt(C). Ambio, 27:582-584.
-
1997
- Cienciala E., Kučera J., Lindroth A., Čermák J., Grelle A., and Halldin S. (1997): Canopy transpiration from a boreal forest in Sweden during a dry year. Agricultural and Forest Meteorology, 86:157-167, DOI:10.1016/S0168-1923(97)00026-9
- Grelle A. (1997): Evaporation components of a boreal forest: variations during the growing season. Journal of Hydrology, 197:70-87, DOI:10.1016/S0022-1694(96)03267-2
- Grelle A. (1997): Long-term water and carbon dioxide fluxes from a boreal forest: methods and applications. PhD thesis, Swedish University of Agricultural Sciences, Uppsala, ISBN:91-576-5312-7
-
1996
- Grelle A. and Lindroth A. (1996): Eddy-correlation system for long-term monitoring of fluxes of heat, water vapour and CO2. Global Change Biology, 2:297-307, DOI:10.1111/j.1365-2486.1996.tb00081.x
-
1995
- Čermák J., Cienciala E., Kučera J., Lindroth A., and Bednářová E. (1995): Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site. Journal of Hydrology, 168:17-27, DOI:10.1016/0022-1694(94)02657-W
Picture gallery (click on the pictures to start a gallery)